Course Number and Name

BEC703- MICROWAVE ENGINEERING

Credits and Contact Hours

3 and 45

Course Coordinator's Name

Ms S. Beulah Hemalatha

Text Books and References

1. Annapurna Das, Sisir K. Das, "Microwave Engineering", TMH Co., Ltd., 1999.Reprint 2001.

- 2. Collin R.E., "Foundation of Microwave Engineering", 2nd Edition, TMH, 1992.
- 3. Samuel Y. Liao, "Microwave devices and Circuits", PHI Pvt Ltd., 1995.

4. http://www.microwaves101.com

Course Description

- Microwave Engineering introduces the student to RF/microwave analysis methods and design techniques..
- Scattering parameters are defined and used to characterize devices and system behavior. Passive and active devices commonly utilized in microwave subsystems are analyzed
- To analyze the current popular distributed systems such as peer-to-peer (P2P) systems
- To understand about microwave measurements.

Prerequisites							Co-requisites							
Electromagnetic Fields and waves.								Fiber optic communication						
		r	equired	l, electi	ve, or s	elected	d electiv	ve (as pe	er Tabl	e 5-1)				
						Requi	red							
Со	urse Outco	mes (C	Os)											
CO	1 Demonst	rate th	e ability	to ide	ntify foi	rmulate	e and so	olve mic	rowav	e netwo	ork rela	ted		
	problems	S												
CO	2 Understa	nd the	need fo	or the d	ifferent	t micro	wave c	ompone	nts an	d their :	specific	ations.		
со	3 Understa	nd the	workin	g princi	ples of	differe	ent mic	rowave	source	S				
со	4 Demonst	rate th	e ability	/ to ide	ntify mi	crowa	/e activ	e device	es alon	g with t	heir			
CO4 Demonstrate the ability to identify microwave active devices along with their applications.														
CO5 Know how to model and determine the performance characteristics of a microwave														
circuit or system														
0	6 Identify t			ont tock	niquos	for dif	foront	aaramot	ore like	- \/S\\/D	imno	danco		
					•		-	parame			, imper	Jance,		
	frequency	y, powe		ICIOWA	e sourd	Les anu	l ludus.							
Stu	dent Outco	omes (SOs) fro	om Crite	erion 3	covere	d by th	is Cours	e.					
0.00	COs/SOs	a	b b	С	d	e	f	g	h	i	i	k	1	
	CO1	H	~				M	0			M		-	
	CO2	М	М	М	М					Н		М	-	
	CO3	М		М	М	М							1	
	CO4	М				М		М			Н		1	
	CO5		М	М						М		М	1	
	CO6				М		Н						1	

List of Topics Covered

UNIT I MICROWAVE NETWORK THEORY

Introduction –Microwave frequency range, applications of microwaves.– Scattering matrix representation of multi port network -properties of S-parameters – S matrix of a two port network with mismatched load – Z and ABCD parameters-Comparison between [S] - [Z] and [Y] matrices

UNIT II MICROWAVE PASSIVE DEVICES

Coaxial cables-connectors and adapters – Wave guides- Matched terminations –Rectangular to circular wave guide transition–Wave guide corners – Bends and twists – Windows – Attenuators – Phase shifters – Wave guide tees– E plane tee – H plane tee – Magic tee – Isolators – Circulators –Directional couplers – scattering matrix derivation for all components .

UNIT III MICROWAVE VACCUM TUBE DEVICES

Introduction – Two cavity klystron amplifier – Mechanism and mode of operation –Power output and efficiency -Applications – Reflex klystron oscillator – Mechanism and mode of operation-Power output – Efficiency – Mode curve –Applications – TWT amplifier – Principle of operation-gain and applications – Magnetron oscillator – Hull cut-off voltage mechanism of operation– Power output and efficiency –Applications – Numerical problems.

UNIT IV MICROWAVE SEMICONDUCTOR DEVICES AND CIRCUITS

Principles of tunnel diodes - Varactor and Step recovery diodes – Transferred Electron Devices -Gunn diode- Avalanche Transit time devices- IMPATT and TRAPATT Devices- Parametric Amplifiers – Introduction to Micro strip Lines, & Monolithic Microwave Integrated circuits-Materials, MMIC Fabrication Techniques.

UNIT V MICROWAVE MEASUREMENTS

Introduction – Slotted line carriage — Spectrum analyzer – Network analyzer – Power measurements – Schottky barrier diode sensor –Bolometer sensor – Power sensor – High power measurement – Insertion loss and attenuation measurement – VSWR measurement – Low and high VSWR – Impedance measurement – Frequency measurement – Measurement of cavity Q – Dielectric measurement of a solid by wave-guide method – Antenna measurement – Radiation pattern – Phase and gain.

10

9

9

10

7